Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.
نویسندگان
چکیده
Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates.
منابع مشابه
The MP/SOFT methodology for simulations of quantum dynamics: Model study of the photoisomerization of the retinyl chromophore in visual rhodopsin
Rigorous simulations of excited-state nonadiabatic quantum dynamics in polyatomic chromophores are particularly challenging since they equire solving the multichannel time-dependent Schrödinger equation describing nuclear wavepackets evolving on electronically coupled potenial energy surfaces. This paper presents an overview of the matching-pursuit/split-operator-Fourier-transform (MP/SOFT) met...
متن کاملCoupling of retinal isomerization to the activation of rhodopsin.
Activation of the visual pigment rhodopsin is caused by 11-cis to -trans isomerization of its retinal chromophore. High-resolution solid-state NMR measurements on both rhodopsin and the metarhodopsin II intermediate show how retinal isomerization disrupts helix interactions that lock the receptor off in the dark. We made 2D dipolar-assisted rotational resonance NMR measurements between (13)C-la...
متن کاملUV Resonance Raman Ground and Excited State Studies of Amide and Peptide Isomerization Dynamics
We report the first measurements of the activation barrier for ground state trans-cis isomerization of secondary amides. We measured activation barriers of Ea ) 13.8 ( 0.8 kcal/mol for aqueous solutions of N-methylacetamide (NMA) and Ea ) 11.0 ( 0.7 kcal/mol for glycylglycine (Gly-Gly). These activation barriers were determined from the temperature dependence of the ground state isomerization r...
متن کاملMolecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.
The formation of photointermediates and conformational changes observed in the retinal chromophore of bilayer-embedded rhodopsin during the early steps of the protein activation have been studied by molecular dynamics (MD) simulation. In particular, the lysine-bound retinal has been examined, focusing on its conformation in the dark-adapted state (10 ns) and on the early steps after the isomeri...
متن کاملPossibility of a Double Well Potential in the Proton Bridge of Visual Pigments and Bacteriorhodopsin
The resonance Raman effect is examined in the case of vibrations which are governed by a double well potential. It is shown that in such a case the intensity of a resonance Raman line depends on three factors: the relative populations of the two wells in the . ground state and in the resonating electronic excited state and the displacement of the potential minima between the ground state and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 54 1 شماره
صفحات -
تاریخ انتشار 1988